代表性论文专著
发表学术论文80余篇(其中SCI论文37篇)
部分代表性论文如下(*标注通讯作者):
[21] Xu S.*, Station-Keeping System for VLFS. In: Cui W., Fu S., Hu Z. (eds) Encyclopedia of Ocean Engineering. Springer, Singapore, 2021. https://doi.org/10.1007/978-981-10-6963-5_344-1
[20] Xu S.*, Murai M.*, Wang X., Takahashi K., A novel conceptual design of a dynamically positioned floating wind turbine, Ocean Engineering, 2021, 221, 108528. https://doi.org/10.1016/j.oceaneng.2020.108528
[19] He H., Xu S., Wang L.*, Wang X., Dynamic positioning control of surge-pitch coupled motion for small-waterplane-area marine structures, China Ocean Engineering, 2021, 35(4): 598-608. https://doi.org/10.1007/s13344-021-0054-8
[18] Ding J.*, Geng Y., Xu S., Yang W., Xie Z., Experimental study on responses of an 8-module VLFS considering different encounter wave conditions, Marine Structures, 2021, 78, 102959. https://doi.org/10.1016/j.marstruc.2021.102959
[17] Wang Y.*, Yao X., Xu S., Breaking pattern of semi-infinite ice sheets during bending failures against sloping structures, International Journal of Offshore and Polar Engineering, 2021, 31(2): 146-152. https://doi.org/10.17736/ijope.2021.jc797
[16] Liu X., Miao Q., Wang X.*, Xu S., Fan H., A novel numerical method for the hydrodynamic analysis of floating bodies over a sloping bottom, Journal of Marine Science and Technology, 2021, published online. https://doi.org/10.1007/s00773-020-00795-6
[15] Liang M., Xu S., Wang X.*, Ding A., Experimental evaluation of a mooring system simplification methodology for reducing mooring lines in a VLFS model testing at a moderate water depth, Ocean Engineering, 2020, 219, 107912. https://doi.org/10.1016/j.oceaneng.2020.107912
[14] Deng Y., Feng W., Xu S.*, Chen X., Wang B., A novel approach for motion predictions of a semi-submersible platform with neural network, Journal of Marine Science and Technology, 2020. Online. https://doi.org/10.1007/s00773-020-00759-w
[13] Ding J.*, Xie Z., Wu Y., Xu S., Qiu G., Wang Y., Wang Q., Numerical and experimental investigation on hydroelastic responses of an 8-module VLFS near a typical island, Ocean Engineering, 2020, 214(107841): 1-20. https://doi.org/10.1016/j.oceaneng.2020.107841
[12] Wang Y., Wang X.*, Xu S., Wang L., Ding A., Deng Y., Experimental and numerical investigation of influences of connector stiffness and damping on dynamics of a multi-module VLFS, International Journal of Offshore and Polar Engineering, 2020, 30(4): 427-436. https://doi.org/10.17736/ijope.2020.sh29
[11] Xu S.*, Liu X., Wang X., Deng Y., A novel conceptual telescopic positioning pile for VLFS deployed in shallow water: structure design, China Ocean Engineering, 2020, 34(4): 526-536. https://doi.org/10.1007/s13344-020-0047-z
[10] He H., Wang L.*, Wang X., Li B., Xu S., Energy-efficient control of a thruster-assisted position mooring system using neural Q-learning techniques, Ships and Offshore Structures, 2020, published online. https://doi.org/10.1080/17445302.2020.1780683
[9] Liu X., Wang X., Xu S.*, A DMM-EMM-RSM hybrid technique on two-dimensional frequency-domain hydroelasticity of floating structures over variable bathymetry, Ocean Engineering, 2020, 201(107135): 1-12. https://doi.org/10.1016/j.oceaneng.2020.107135
[8] He H., Wang L.*, Zhu Y., Xu S., Numerical and experimental study on the docking of a dynamically positioned barge in float-over installation, Ships and Offshore Structures, 2020, online: 1-11. https://doi.org/10.1080/17445302.2020.1737452
[7] Xu S., Liang M., Wang X.*, Ding A., A mooring system deployment design methodology for vessels in varying water depths, China Ocean Engineering, 2020, 34(2): 185-197. https://doi.org/10.1007/s13344-020-0018-4
[6] Liu X., Wang X., Xu S.*, Ding A., Influences of a varying sill at the seabed on two-dimensional radiation of linear water waves by a rectangular buoy, Journal of Offshore Mechanics and Arctic Engineering, 2020, 142(041202): 1-12. https://doi.org/10.1115/1.4045913
[5] Wang Y., Wang X. Xu S.*, Wang L., Numerical and experimental investigation of hydrodynamic interactions of two VLFS modules deployed in tandem, China Ocean Engineering, 2020, 34(1): 46-55. https://doi.org/10.1007/s13344-020-0005-9
[4] Xu S., Wang X.*, Yang J., Wang L., A fuzzy rule based PID controller for dynamic positioning of vessels in variable environmental disturbances, Journal of Marine Science and Technology, 2019, published online: 1-11. https://doi.org/10.1007/s00773-019-00689-2
[3] Liang M., Wang X., Xu S.*, Ding A., A shallow water mooring system design methodology combining NSGA-II with the vessel-mooring coupled model, Ocean Engineering, 2019, 190(106417): 1-11. https://doi.org/10.1016/j.oceaneng.2019.106417
[2] Liang M., Xu S., Wang X.*, Ding A., Simplification of mooring line number for model testing based on equivalent of vessel/mooring coupled dynamics, Journal of Marine Science and Technology, 2019, published online: 1-16. https://doi.org/10.1007/s00773-019-00664-x
[1] Kou Y., Yang J., Xu S.*, Peng T., Liu J., Wu Z., Structural stress monitoring and fem analysis of the cutting operation of the main bracket of a semi-submersible platform, China Ocean Engineering, 2019, 33(6): 649-659. https://doi.org/10.1007/s13344-019-0062-0